
Understanding Algorithms: Visualize Them In Action

Mentor: Prof. Shobha Bagai

Cluster Innovation Centre

University of Delhi

Madhav (12028)

Siddharth Gupta (12056)

Abstract

Introduction

N QueensKnight’s Tower

Algorithm Visualisation

A* Pathfinding
The visualizer allows users to specify the 
size of the chessboard and the speed of 
the execution. The solution is shown on 
a graphical chessboard, where each 
queen is represented by an image.

The program generates a 
random list of numbers, displays 
it on the screen, and animates 
the sorting process using two 
popular sorting algorithms. 
Bubble Sort and Insertion Sort

Sorting

The aim of this program is to find a 
subset of edges in a connected, 
weighted graph that connects all the 
vertices without any cycles and with 
the minimum possible total edge 
weight.

A knight's tour is a sequence of moves of a knight on a 
chessboard such that the knight visits every square 
exactly once

In this report, an e-Learning tool for A* Pathfinder, Bubble Sort,Insertion Sort, N Queens, Knight's tour,Prim’s 
visualization is described.For example, In sorting the animation tool would represent information as a bar and 
once choosing a data-ordering and algorithms, the user will run an automatic animation or step through it at 
their own pace. In path finding making the starting and the end node be able to move around or the user to 
choose wherever he wants it to start or end.

Algorithm Visualizer is a dynamic graphic tool that allows the visualization of computation for a given 
algorithmic program. This study aims to design and implement a system of algorithmic visualization that 
shows the abstract algorithmic idea behind a certain computing method. The goal is to help students 
understand algorithms effectively by visualizing the run time for each implemented algorithm.

An algorithm visualization project can be a powerful tool for teaching and understanding algorithms. By creating visual representations of algorithms, it becomes easier to see how they work and understand their behaviour. 
It’s helps us students to better understand the logic behind algorithms and how they can be used to solve problems. To create an effective algorithm visualization project, it is important to have a clear understanding of the 
algorithm you are trying to visualize. The visualization should be clear, concise, and easy to understand. Finally, it is important to test your algorithm visualization project with users to ensure that it is effective in achieving 
its goals. User feedback can be used to refine the visualization and make it more effective for future users.

Conclusion

Backtracking Algorithm


Backtracking algorithm is a systematic way of 
searching for a solution to a problem that 
incrementally builds a partial solution and 
backtracks to previous steps when it 
determines that the current solution cannot be 
completed successfully. It is commonly used in 
solving combinatorial problems such as 
generating permutations, subsets, and graphs. 
Backtracking algorithms are powerful tools in 
optimization problems, constraint satisfaction, 
and artificial intelligence. They are particularly 
useful in solving problems where there is no 
known efficient algorithm. However, 
backtracking algorithms can be 
computationally expensive, especially when 
dealing with large search spaces.

Prim’s Algorithm


Prim's algorithm is a greedy algorithm used 
to find the minimum spanning tree of a 
weighted undirected graph. It starts with 
an arbitrary vertex and adds the minimum 
weight edge to connect it to the rest of the 
graph. It then adds the minimum weight 
edge from the existing tree to a new vertex 
until all vertices are connected. The 
algorithm guarantees that the tree is 
always connected and has the minimum 
weight possible. Prim's algorithm has a 
time complexity of O(E log V), where E is 
the number of edges and V is the number 
of vertices in the graph. It is widely used in 
network design, cluster analysis, and 
computer networks.

A* Pathfinding


A* Pathfinding Algorithm is a search algorithm used to 
find the shortest path between two nodes in a graph or 
a grid. It is a heuristic-based algorithm that uses a 
combination of the actual cost to reach a node from the 
starting node and an estimate of the cost to reach the 
destination node. This estimate is calculated using a 
heuristic function, such as the Euclidean distance or 
Manhattan distance. The algorithm explores the graph 
or grid by selecting the node with the lowest f-value, 
which is the sum of the actual cost and the estimated 
cost. A* algorithm is optimal and complete, meaning it 
always finds the shortest path if one exists and 
terminates if no path exists. It is widely used in robotics, 
video games, and map routing applications. A* algorithm 
has a time complexity of O(b^d), where b is the 
branching factor and d is the depth of the shallowest 
solution. However, the use of a heuristic function can 
significantly reduce the search space and improve the 
algorithm's efficiency.


Sorting Algorithms


Sorting algorithms are algorithms used to put a 
collection of data elements in a specific order. 
There are numerous types of sorting algorithms, 
each with its unique advantages and 
disadvantages. Some popular sorting algorithms 
are bubble sort, insertion sort, selection sort, 
merge sort, quicksort, heapsort, and radix sort. 
The efficiency of a sorting algorithm is measured 
by its time complexity, which is usually denoted 
as O(n log n) or O(n^2), where n is the number of 
elements to be sorted. Sorting algorithms have 
numerous applications in computer science, 
such as in databases, search algorithms, data 
compression, and data analysis. The choice of 
sorting algorithm depends on the specific use 
case, the size of the data set, and the desired 
time complexity.


Data Structures and Algorithms

Data structures refer to the way that data is organized and stored within a computer program. A 
data structure defines a way of representing and manipulating data in a way that makes it easy to 
access and process. Examples of common data structures include arrays, linked lists, trees, 
graphs, and hash tables.

Algorithms, on the other hand, are sets of instructions that are designed to perform specific tasks 
or solve specific problems. Algorithms are typically developed using one or more data structures 
as the underlying framework for organizing and processing data. Examples of common algorithms 
include sorting algorithms, search algorithms, and graph traversal algorithms.

It allows the user to create a grid of nodes, designate 
start and end points, and customise the grid by creating 
barriers. It allows you to find shortest distance between 
start and end points.


Prim’s Algorithm


